Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Carcinogenesis ; 32(2): 182-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21037224

RESUMO

Associations between bladder cancer risk and NAT2 and GSTM1 polymorphisms have emerged as some of the most consistent findings in the genetic epidemiology of common metabolic polymorphisms and cancer, but their interaction with tobacco use, intensity and duration remain unclear. In a New England population-based case-control study of urothelial carcinoma, we collected mouthwash samples from 1088 of 1171 cases (92.9%) and 1282 of 1418 controls (91.2%) for genotype analysis of GSTM1, GSTT1 and NAT2 polymorphisms. Odds ratios and 95% confidence intervals of bladder cancer among New England Bladder Cancer Study subjects with one or two inactive GSTM1 alleles (i.e. the 'null' genotype) were 1.26 (0.85-1.88) and 1.54 (1.05-2.25), respectively (P-trend = 0.008), compared with those with two active copies. GSTT1 inactive alleles were not associated with risk. NAT2 slow acetylation status was not associated with risk among never (1.04; 0.71-1.51), former (0.95; 0.75-1.20) or current smokers (1.33; 0.91-1.95); however, a relationship emerged when smoking intensity was evaluated. Among slow acetylators who ever smoked at least 40 cigarettes/day, risk was elevated among ever (1.82; 1.14-2.91, P-interaction = 0.07) and current heavy smokers (3.16; 1.22-8.19, P-interaction = 0.03) compared with rapid acetylators in each category; but was not observed at lower intensities. In contrast, the effect of GSTM1-null genotype was not greater among smokers, regardless of intensity. Meta-analysis of the NAT2 associations with bladder cancer showed a highly significant relationship. Findings from this large USA population-based study provided evidence that the NAT2 slow acetylation genotype interacts with tobacco smoking as a function of exposure intensity.


Assuntos
Arilamina N-Acetiltransferase/genética , Glutationa Transferase/genética , Fumar/efeitos adversos , Neoplasias da Bexiga Urinária/etiologia , Acetilação , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Risco , Neoplasias da Bexiga Urinária/genética
2.
Br J Dermatol ; 161(5): 1130-5, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19663877

RESUMO

BACKGROUND: Para-phenylenediamine (PPD) is a common contact sensitizer causing allergic contact dermatitis, a major skin problem. As PPD may need activation to become immunogenic, the balance between activation and/or detoxification processes may influence an individual's susceptibility. PPD is acetylated and the metabolites do not activate dendritic-like cells and T cells of PPD-sensitized individuals. OBJECTIVES: To investigate whether PPD can be acetylated in vitro by the two N-acetyltransferases 1 (NAT1) and 2 (NAT2). Based on the assumption that N-acetylation by NAT1 or NAT2 is a detoxification reaction with respect to sensitization, we examined whether NAT1 and NAT2 genotypes are different between PPD-sensitized individuals and matched controls. METHODS: Genotyping for NAT1 and NAT2 polymorphisms was performed in 147 PPD-sensitized individuals and 200 age- and gender-matched controls. Results Both PPD and monoacetyl-PPD were N-acetylated in vitro by recombinant human NAT1 and to a lesser extent by NAT2. Genotyping for NAT1*3, NAT1*4, NAT1*10, NAT1*11 and NAT1*14 showed that genotypes containing the rapid acetylator NAT1*10 allele were under-represented in PPD-sensitized cases (adjusted odds ratio 0.72, 95% confidence interval 0.45-1.16). For NAT2, NAT2*4, NAT2*5AB, NAT2*5C, NAT2*6A and NAT2*7B alleles were genotyped. Individuals homozygous for the rapid acetylator allele NAT2*4 were under-represented in cases compared with controls (4.3% vs. 9.4%), but this trend was not significant. CONCLUSIONS: With respect to data indicating that NAT1 but not NAT2 is present in human skin, we conclude that NAT1 genotypes containing the rapid acetylator NAT1*10 allele are potentially associated with reduced susceptibility to PPD sensitization.


Assuntos
Arilamina N-Acetiltransferase/genética , Dermatite Alérgica de Contato/genética , Isoenzimas/genética , Fenilenodiaminas/efeitos adversos , Polimorfismo Genético , Acetilação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Arilamina N-Acetiltransferase/metabolismo , Criança , Dermatite Alérgica de Contato/etiologia , Feminino , Genótipo , Humanos , Imunização , Masculino , Pessoa de Meia-Idade , Fenilenodiaminas/metabolismo , Fatores de Risco , Adulto Jovem
3.
Xenobiotica ; 39(5): 399-406, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19301197

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is carcinogenic in multiple organs and numerous species. Bioactivation of PhIP is initiated by PhIP N(2)-hydroxylation catalysed by cytochrome P450s. Following N-hydroxylation, O-acetylation catalysed by N-acetyltransferase 2 (NAT2) is considered a further possible activation pathway. Genetic polymorphisms in NAT2 may modify cancer risk following exposure. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles were used to test the effect of CYP1A1 and NAT2 polymorphism on PhIP genotoxicity. Cells transfected with NAT2*4 had significantly higher levels of N-hydroxy-PhIP O-acetyltransferase (p = 0.0150) activity than cells transfected with NAT2*5B. Following PhIP treatment, CHO cell lines transfected with CYP1A1, CYP1A1/NAT2*4 and CYP1A1/NAT2*5B each showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase (hprt) mutagenesis not observed in untransfected CHO cells. dG-C8-PhIP was the primary DNA adduct formed and levels were dose dependent in transfected CHO cells in the order: CYP1A1 < CYP1A1 and NAT2*5B < CYP1A1 and NAT2*4, although levels did not differ significantly (p > 0.05) following one-way analysis of variance. These results strongly support activation of PhIP by CYP1A1 with little effect of human NAT2 genetic polymorphism on mutagenesis and DNA damage.


Assuntos
Arilamina N-Acetiltransferase/metabolismo , Carcinógenos/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/metabolismo , Imidazóis/farmacologia , Mutagênicos/farmacologia , Animais , Arilamina N-Acetiltransferase/genética , Células CHO , Cricetinae , Cricetulus , Citocromo P-450 CYP1A1/genética , Dano ao DNA , Humanos , Mutagênese , Polimorfismo Genético , Transfecção
4.
Toxicol Appl Pharmacol ; 235(1): 114-23, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19100279

RESUMO

4-Amino-2-hydroxytolune (AHT) is an aromatic amine ingredient in oxidative hair colouring products. As skin contact occurs during hair dyeing, characterisation of dermal metabolism is important for the safety assessment of this chemical class. We have compared the metabolism of AHT in the human keratinocyte cell line HaCaT with that observed ex-vivo in human skin and in vivo (topical application versus oral (p.o.) and intravenous (i.v.) route). Three major metabolites of AHT were excreted, i.e. N-acetyl-AHT, AHT-sulfate and AHT-glucuronide. When 12.5 mg/kg AHT was applied topically, the relative amounts of each metabolite were altered such that N-acetyl-AHT product was the major metabolite (66% of the dose in comparison with 37% and 32% of the same applied dose after i.v. and p.o. administration, respectively). N-acetylated products were the only metabolites detected in HaCaT cells and ex-vivo whole human skin discs for AHT and p-aminophenol (PAP), an aromatic amine known to undergo N-acetylation in vivo. Since N-acetyltransferase 1 (NAT1) is the responsible enzyme, kinetics of AHT was further compared to the standard NAT1 substrate p-aminobenzoic acid (PABA) in the HaCaT model revealing similar values for K(m) and V(max). In conclusion NAT1 dependent dermal N-acetylation of AHT represents a 'first-pass' metabolism effect in the skin prior to entering the systemic circulation. Since the HaCaT cell model represents a suitable in vitro assay for addressing the qualitative contribution of the skin to the metabolism of topically-applied aromatic amines it may contribute to a reduction in animal testing.


Assuntos
Compostos de Anilina/metabolismo , Cresóis/metabolismo , Queratinócitos/metabolismo , Fenóis/metabolismo , Pele/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Adulto , Compostos de Anilina/química , Animais , Arilamina N-Acetiltransferase/genética , Células Cultivadas , Cresóis/química , Feminino , Genótipo , Humanos , Isoenzimas/genética , Pessoa de Meia-Idade , Estrutura Molecular , Fenóis/química , Ratos , Ratos Wistar
5.
Pharmacogenomics J ; 8(5): 339-48, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17909564

RESUMO

Genetic variants of human N-acetyltransferase 1 (NAT1) are associated with cancer and birth defects. N- and O-acetyltransferase catalytic activities, Michaelis-Menten kinetic constants (K(m) and V(max)) and steady-state expression levels of NAT1-specific mRNA and protein were determined for the reference NAT1*4 and variant human NAT1 haplotypes possessing single nucleotide polymorphisms (SNPs) in the open reading frame. Although none of the SNPs caused a significant effect on steady-state levels of NAT1-specific mRNA, C97T(R33stop), C190T(R64W), C559T (R187stop) and A752T(D251V) each reduced NAT1 protein level and/or N- and O-acetyltransferase catalytic activities to levels below detection. G560A(R187Q) substantially reduced NAT1 protein level and catalytic activities and increased substrate K(m). The G445A(V149I), G459A(synonymous) and T640G(S214A) haplotype present in NAT1*11 significantly (P<0.05) increased NAT1 protein level and catalytic activity. Neither T21G(synonymous), T402C(synonymous), A613G(M205V), T777C(synonymous), G781A(E261K) nor A787G(I263V) significantly affected K(m), catalytic activity, mRNA or protein level. These results suggest heterogeneity among slow NAT1 acetylator phenotypes.


Assuntos
Arilamina N-Acetiltransferase/genética , Isoenzimas/genética , Polimorfismo de Nucleotídeo Único , Acetilação , Substituição de Aminoácidos , Arilamina N-Acetiltransferase/química , Arilamina N-Acetiltransferase/metabolismo , Biocatálise , Haplótipos , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , RNA Mensageiro/genética
6.
Oncogene ; 25(11): 1649-58, 2006 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-16550165

RESUMO

A role for the N-acetyltransferase 2 (NAT2) genetic polymorphism in cancer risk has been the subject of numerous studies. Although comprehensive reviews of the NAT2 acetylation polymorphism have been published elsewhere, the objective of this paper is to briefly highlight some important features of the NAT2 acetylation polymorphism that are not universally accepted to better understand the role of NAT2 polymorphism in carcinogenic risk assessment. NAT2 slow acetylator phenotype(s) infer a consistent and robust increase in urinary bladder cancer risk following exposures to aromatic amine carcinogens. However, identification of specific carcinogens is important as the effect of NAT2 polymorphism on urinary bladder cancer differs dramatically between monoarylamines and diarylamines. Misclassifications of carcinogen exposure and NAT2 genotype/phenotype confound evidence for a real biological effect. Functional understanding of the effects of NAT2 genetic polymorphisms on metabolism and genotoxicity, tissue-specific expression and the elucidation of the molecular mechanisms responsible are critical for the interpretation of previous and future human molecular epidemiology investigations into the role of NAT2 polymorphism on cancer risk. Although associations have been reported for various cancers, this paper focuses on urinary bladder cancer, a cancer in which a role for NAT2 polymorphism was first proposed and for which evidence is accumulating that the effect is biologically significant with important public health implications.


Assuntos
Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Polimorfismo Genético , Neoplasias da Bexiga Urinária/etiologia , Neoplasias da Bexiga Urinária/genética , Acetilação , Aminas/toxicidade , Carcinógenos/toxicidade , Genótipo , Haplótipos , Humanos , Epidemiologia Molecular , Fenótipo , Medição de Risco , Fatores de Risco
7.
Cancer Epidemiol Biomarkers Prev ; 10(12): 1239-48, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11751440

RESUMO

Using the International Project on Genetic Susceptibility to Environmental Carcinogens (GSEC) database containing information on over 15,000 control (noncancer) subjects, the allele and genotype frequencies for many of the more commonly studied metabolic genes (CYP1A1, CYP2E1, CYP2D6, GSTM1, GSTT1, NAT2, GSTP, and EPHX) in the human population were determined. Major and significant differences in these frequencies were observed between Caucasians (n = 12,525), Asians (n = 2,136), and Africans and African Americans (n = 996), and some, but much less, heterogeneity was observed within Caucasian populations from different countries. No differences in allele frequencies were seen by age, sex, or type of controls (hospital patients versus population controls). No examples of linkage disequilibrium between the different loci were detected based on comparison of observed and expected frequencies for combinations of specific alleles.


Assuntos
População Negra/genética , Frequência do Gene , Predisposição Genética para Doença , Neoplasias/genética , Polimorfismo Genético , População Branca/genética , Sistema Enzimático do Citocromo P-450/genética , Bases de Dados Factuais , Ligação Genética , Humanos
8.
Pharmacogenetics ; 11(8): 655-61, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11692073

RESUMO

Glutathione S-transferases are important in the detoxification of a wide range of human carcinogens. Previous studies have shown inconsistent associations between the GSTT1 and GSTM1 null genotypes and stomach cancer risk. We investigated the relationship between these and related genotypes and stomach cancer risk in a population-based case-control study in Warsaw, Poland, where stomach cancer incidence and mortality rates are among the highest in Europe. DNA from blood samples was available for 304 stomach cancer patients and 427 control subjects. We observed a 1.48-fold increased risk for stomach cancer (95% confidence interval 0.97-2.25) in patients with the GSTT1 null genotype but no evidence of increased risk associated with the GSTM1, GSTM3 or GSTP1 genotypes. Furthermore, the stomach cancer risk associated with the GSTT1 null genotype varied by age at diagnosis, with odds ratios of 3.85, 1.91, 1.78 and 0.59 for those diagnosed at ages less than 50, 50-59, 60-69 and 70 years or older, respectively (P trend = 0.01). This was due to a shift in the GSTT1 genotype distribution across age groups among stomach cancer patients only. These results suggest that the GSTT1 null genotype may be associated with increased risk of stomach cancer.


Assuntos
Glutationa Transferase/genética , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Genética Populacional , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polônia/epidemiologia , Fumar/epidemiologia , Fumar/genética
9.
Pharmacogenetics ; 11(6): 511-20, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11505221

RESUMO

N-acetyltransferase 1 (NAT1) catalyses the activation and/or deactivation of aromatic and heterocyclic amine carcinogens. A genetic polymorphism in NAT1 is associated with an increased risk of various cancers and drug toxicities, but epidemiological investigations are severely compromised by a poor understanding of the relationship between NAT1 genotype and phenotype. Human reference NAT1*4 and 12 known human NAT1 allelic variants possessing nucleotide polymorphisms in the NAT1 coding region were cloned and expressed in yeast (Schizosaccharomyces pombe). Large reductions in N- and O-acetyltransferase catalytic activities were observed for recombinant NAT1 allozymes encoded by NAT1*14B, NAT1*15, NAT1*17, NAT1*19 and NAT1*22. Each of these alleles exhibited NAT1 protein expression levels below the limit of detection as measured by Western blot. No differences between high and low activity NAT1 alleles were observed in relative mRNA expression or relative transformation efficiency. The recombinant NAT1 17 and NAT1 22 allozymes showed reduced intrinsic stability when compared with NAT1 4. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) N-acetylation was not catalysed by any of the NAT1 allozymes. Large differences in the metabolic activation via O-acetylation of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-hydroxy-PhIP) were noted for NAT1 allelic variants. The results of these studies suggest an important role for the NAT1 genetic polymorphism in metabolism of aromatic and heterocyclic amine carcinogens. Furthermore, these results suggest that low NAT1 phenotype results from NAT1 allelic variants that encode reduced expression of NAT1 and/or less-stable NAT1 protein.


Assuntos
Acetiltransferases/genética , Acetiltransferases/metabolismo , Arilamina N-Acetiltransferase , Polimorfismo Genético , Alelos , Carcinógenos/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Variação Genética , Temperatura Alta , Humanos , Imidazóis/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Desnaturação Proteica , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
10.
Pharmacogenetics ; 11(3): 207-15, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11337936

RESUMO

N-Acetyltransferase 2 (NAT2) catalyses the activation and/or deactivation of a variety of aromatic amine drugs and carcinogens. Polymorphisms in the N-acetyltransferase 2 (NAT2) gene have been associated with a variety of drug-induced toxicities, as well as cancer in various tissues. Eleven single nucleotide polymorphisms (SNPs) have been identified in the NAT2 coding region, but the specific effects of each of these SNPs on expression of NAT2 protein and N-acetyltransferase enzymatic activity are poorly understood. To investigate the functional consequences of SNPs in the NAT2 coding region, reference NAT2*4 and NAT2 variant alleles possessing one of the 11 SNPs in the NAT2 coding region were cloned and expressed in yeast (Schizosaccharomyces pombe). Reductions in catalytic activity for the N-acetylation of a sulfonamide drug (sulfamethazine) and an aromatic amine carcinogen (2-aminofluorene) were observed for NAT2 variants possessing G191A (R64Q), T341C (I114T), A434C (E145P), G590A (R197Q), A845C (K282T) or G857A (G286T). Reductions in expression of NAT2 immunoreactive protein were observed for NAT2 variants possessing T341C, A434C or G590A. Reductions in protein stability were noted for NAT2 variants possessing G191A, A845C, G857A or, to some extent, G590A. No significant differences in mRNA expression or transformation efficiency were observed among any of the NAT2 alleles. These results suggest two mechanisms for slow acetylator phenotype(s) and more clearly define the effects of individual SNPs on human NAT2 expression, stability and catalytic activity.


Assuntos
Arilamina N-Acetiltransferase/fisiologia , Polimorfismo de Nucleotídeo Único/fisiologia , Northern Blotting , Southern Blotting , Western Blotting , Expressão Gênica , Humanos , Testes de Sensibilidade Microbiana , Proteínas Recombinantes , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Sulfametazina/farmacologia
11.
J Biochem Mol Toxicol ; 15(1): 26-33, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11170312

RESUMO

N-acetyltransferases (EC 2.3.1.5) catalyze O-acetylation of heterocyclic amine carcinogens to DNA-reactive electrophiles that bind and mutate DNA. An acetylation polymorphism exists in humans and Syrian hamsters regulated by N-acetyltransferase-2 (NAT2) genotype. Some human epidemiological studies suggest a role for NAT2 phenotype in predisposition to cancers related to heterocyclic amine exposures, including breast cancer. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine carcinogen prevalent in the human environment and induces a high incidence of mammary tumors in female rats. PhIP-induced carcinogenesis was examined in female rapid and slow acetylator Syrian hamsters congenic at the NAT2 locus. In both rapid and slow acetylators, PhIP-DNA adduct levels were highest in pancreas, lower in heart, small intestine, and colon, and lowest in mammary gland and liver. Metabolic activation of N-hydroxy-PhIP by O-acetyltransferase was highest in mammary epithelial cells, lower in liver and colon, and lowest in pancreas. Metabolic activation of N-hydroxy-PhIP by O-sulfotransferase was low in liver and colon and below the limit of detection in mammary epithelial cells and pancreas. Unlike the rat, PhIP did not induce breast or any other tumors in female rapid and slow acetylator congenic hamsters administered high-dose PhIP (10 doses of 75 mg/kg) and a high-fat diet.


Assuntos
Carcinógenos/toxicidade , Adutos de DNA/efeitos dos fármacos , Imidazóis/toxicidade , Neoplasias Mamárias Experimentais/induzido quimicamente , Acetilação , Administração Oral , Animais , Animais Congênicos , Arilamina N-Acetiltransferase/genética , Carcinógenos/administração & dosagem , Cricetinae , Adutos de DNA/metabolismo , Modelos Animais de Doenças , Feminino , Homozigoto , Imidazóis/administração & dosagem , Imidazóis/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Mesocricetus , Distribuição Tecidual
12.
Toxicol Sci ; 59(2): 226-30, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11158715

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine carcinogen present in well-done meat. PhIP must undergo host-mediated bioactivation to exert its mutagenic and carcinogenic effects. Following N-hydroxylation, N-acetyltransferases catalyze the O-acetylation (activation) of N-hydroxy-PhIP to an electrophile causing DNA damage. A well-defined genetic polymorphism in N-acetyltransferase 2 (NAT2) activity exists in humans and the Syrian hamster. Since some human epidemiological studies suggest an association between acetylator genotype and cancer susceptibility in individuals who consume well done meats, this study was designed to investigate the specific role of acetylator genotype in PhIP-induced tumors using a Syrian hamster model congenic at the NAT2 locus. Following oral administration of PhIP to male rapid and slow acetylator Syrian hamsters, DNA adducts were identified in each tissue examined with levels in the relative order: pancreas > heart and urinary bladder > prostate, small intestine and transverse colon > ascending colon, liver, cecum, descending colon, and rectum. However, no tumors were observed in male rapid and slow acetylator congenic hamsters administered 11 oral doses of PhIP (75 mg/kg) and maintained on a high fat diet for one year.


Assuntos
Arilamina N-Acetiltransferase/genética , Carcinógenos/toxicidade , Adutos de DNA/efeitos dos fármacos , Imidazóis/toxicidade , Acetilação , Animais , Animais Congênicos , Cricetinae , DNA/efeitos dos fármacos , Adutos de DNA/análise , Modelos Animais de Doenças , Imidazóis/metabolismo , Masculino , Mesocricetus , Polimorfismo Genético
14.
Drug Metab Dispos ; 28(12): 1425-32, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11095579

RESUMO

This article is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics presented at the joint meeting of the American Society for Biochemistry and Molecular Biology and the American Society for Pharmacology and Experimental Therapeutics, June 4-8, Boston, Massachusetts. The presentations focused on the pharmacogenetics of the NAT1 and NAT2 arylamine N-acetyltransferases, including developmental regulation, structure-function relationships, and their possible role in susceptibility to breast, colon, and pancreatic cancers. The symposium honored Wendell W. Weber for over 35 years of leadership and scientific advancement in pharmacogenetics and was highlighted by his overview of the historical development of the field.


Assuntos
Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Farmacogenética , Animais , Humanos , Neoplasias/enzimologia , Neoplasias/genética
15.
Cancer Epidemiol Biomarkers Prev ; 9(9): 905-10, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11008907

RESUMO

Heterocyclic amines found in well-done meat require host-mediated metabolic activation before initiating DNA mutations and tumors in target organs. Polymorphic N-acetyltransferase-2 (NAT2) catalyzes the activation of heterocyclic amines via O-acetylation, suggesting that NAT2 genotypes with high O-acetyltransferase activity (rapid/intermediate acetylator phenotype) increase the risk of breast cancer in women who consume well-done meat. To test this hypothesis, DNA samples and information on diet and other breast cancer risk factors were obtained from a nested case-control study of postmenopausal women. Twenty-seven NAT2 genotypes were determined and assigned to rapid, intermediate, or slow acetylator groups based on published characterizations of recombinant NAT2 allozymes. NAT2 genotype alone was not associated with breast cancer risk. A significant dose-response relationship was observed between breast cancer risk and consumption of well-done meat among women with the rapid/intermediate NAT2 genotype (trend test, P = 0.003) that was not evident among women with the slow acetylator genotype (trend test, P = 0.22). These results suggest an interaction between NAT2 genotype and meat doneness, although a test for multiplicative interaction was not statistically significant (P = 0.06). Among women with the rapid/intermediate NAT2 genotype, consumption of well-done meat was associated with a nearly 8-fold (odds ratio, 7.6; 95% confidence interval, 1.1-50.4) elevated breast cancer risk compared with those consuming rare or medium-done meats. These results are consistent with a role for O-acetylation in the activation of heterocyclic amine carcinogens and support the hypothesis that the NAT2 acetylation polymorphism is a breast cancer risk factor among postmenopausal women with high levels of heterocyclic amine exposure.


Assuntos
Arilamina N-Acetiltransferase/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Carne/efeitos adversos , Acetilação , Idoso , Aminas/efeitos adversos , Biotransformação , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Carcinógenos , Estudos de Casos e Controles , Culinária , Feminino , Compostos Heterocíclicos/efeitos adversos , Humanos , Funções Verossimilhança , Modelos Logísticos , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Pós-Menopausa/fisiologia , Fatores de Risco
16.
Pharmacol Toxicol ; 86(6): 257-63, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10895988

RESUMO

Epidemiological studies indicate that rapid acetylators with a high intake of well-done red meat have an increased risk of colorectal cancer. Arylamine N-acetyltransferase enzymes (E.C. 2.3.1.5) activate carcinogenic heterocyclic amines found in the crust of fried meat via O-acetylation of their N-hydroxylamines to reactive intermediates that bind covalently to DNA and produce mutations. Syrian hamsters as well as humans express two N-acetyltransferase isozymes (NAT1 and NAT2) which differ in substrate specificity and genetic control. Nucleic acid substitutions in the NAT2 gene segregate individuals into rapid, intermediate and slow acetylator phenotypes. In the present paper, we examined the role of the polymorphic NAT2 acetylator genotype in carcinogenesis induced by the food mutagens 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) by comparing Syrian hamster lines congenic at the NAT2 locus. No differences were found between rapid and slow acetylator congenic hamsters in levels of intestinal PhIP-DNA adducts. In contrast to previous studies in rats, no carcinogen-related induction of the preneoplastic lesions aberrant crypt foci or tumors was found in the intestines of rapid and slow acetylator congenic Syrian hamsters administered PhIP or IQ.


Assuntos
Adenoma/metabolismo , Adutos de DNA/metabolismo , DNA de Neoplasias/metabolismo , Imidazóis/metabolismo , Neoplasias Intestinais/metabolismo , Mutagênicos/metabolismo , Lesões Pré-Cancerosas/metabolismo , Quinolinas/metabolismo , Acetilação , Adenoma/induzido quimicamente , Adenoma/enzimologia , Animais , Animais Congênicos , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Cricetinae , Feminino , Alimentos , Imidazóis/administração & dosagem , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/enzimologia , Masculino , Mesocricetus , Mutagênicos/administração & dosagem , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/enzimologia , Quinolinas/administração & dosagem
17.
J Invest Dermatol ; 114(6): 1164-73, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10844561

RESUMO

Cutaneous reactions are the most common manifestation of delayed-type hypersensitivity caused by sulfamethoxazole and dapsone. In light of the recognized metabolic and immunologic activity of the skin, we investigated the potential role of normal human epidermal keratinocytes in the development of these reactions. Adult and neonatal normal human epidermal keratinocytes metabolized sulfamethoxazole and dapsone to N-4-hydroxylamine and N-acetyl derivatives in a time-dependent manner. The latter was catalyzed by N-acetyltransferase 1 alone as normal human epidermal keratinocytes did not express mRNA for N-acetyltransferase 2. Investigation of metabolism-dependent toxicity of sulfamethoxazole and dapsone, and subsequent incubation of normal human epidermal keratinocytes with the respective hydroxylamine metabolites, demonstrated that these cells were resistant to the cytotoxic effects of sulfamethoxazole hydroxylamine but not dapsone hydroxylamine. With prior depletion of glutathione, however, normal human epidermal keratinocytes became susceptible to the toxicity of sulfamethoxazole hydroxylamine. Covalent adduct formation by sulfamethoxazole hydroxylamine was detected in normal human epidermal keratinocytes, even in the absence of cell death, and was increased with glutathione depletion. Major protein targets of sulfamethoxazole hydroxylamine were observed in the region of 160, 125, 95, and 57 kDa. Dapsone hydroxylamine also caused covalent adduct formation in normal human epidermal keratinocytes. Together, these observations provide a basis for our hypothesis that normal human epidermal keratinocytes are involved in the initiation and propagation of a cutaneous hypersensitivity response to these drugs.


Assuntos
Inativação Metabólica/fisiologia , Queratinócitos/metabolismo , Adulto , Dermatite Alérgica de Contato/etiologia , Toxidermias/etiologia , Humanos , Hipersensibilidade Tardia/induzido quimicamente , Queratinócitos/química , Sulfametoxazol/efeitos adversos
19.
Cancer Epidemiol Biomarkers Prev ; 9(5): 529-32, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10815700

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the most abundant heterocyclic amine carcinogen in the human diet and is a colon carcinogen in the rat. N-Acetyltransferase-2 (NAT2) catalyzes the conversion of PhIP and other heterocyclic amines to a DNA-reactive form. NAT2 has a polymorphic distribution in humans and other mammals, including rats. The rapid NAT2 genotype has been shown to be associated with increased colorectal cancer risk in some, but not all, human epidemiological studies. This investigation was designed to study the role of acetylator genotype in PhIP-induced colon carcinogenesis using aberrant crypt foci (ACF) as an intermediate biomarker. Five-week-old male, rapid-acetylator Fischer 344 (F344) rats and slow-acetylator Wistar-Kyoto (WKY) rats were fed the semipurified AIN76A diet with 0.01% PhIP, 0.04% PhIP, or no PhIP (control) for 8 weeks. PhIP induced ACF in both rapid- and slow-acetylator rats; 0.04% PhIP induced more ACF than 0.01% PhIP. There was no difference in the number of ACF between rapid- and slow-acetylator rats that were fed 0.01% PhIP. However, 0.04% PhIP induced 2-fold higher ACF and a greater dose-dependent increase in PhIP-induced ACF in the rapid-acetylator F344 rats compared with the slow-acetylator WKY rats. The results support human epidemiological studies showing higher risk for colorectal cancer in rapid acetylators who frequently consume meat that is very well done.


Assuntos
Imidazóis/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Lesões Pré-Cancerosas/induzido quimicamente , Acetilação/efeitos dos fármacos , Animais , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/metabolismo , Humanos , Hidroxilação/efeitos dos fármacos , Imidazóis/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Lesões Pré-Cancerosas/enzimologia , Lesões Pré-Cancerosas/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos WKY
20.
Pharmacogenetics ; 10(2): 171-82, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10762005

RESUMO

The acetylator phenotype and genotype of AIDS patients, with and without an acute illness, was compared with that of healthy control subjects (30 per group). Two probe drugs, caffeine and dapsone, were used to determine the phenotype in the acutely ill cohort. Polymerase chain reaction amplification and restriction fragment length polymorphism analysis served to distinguish between the 26 known NAT2 alleles and the 21 most common NAT1 alleles. The distribution (%) of slow:rapid acetylator phenotype seen among acutely ill AIDS patients differed with the probe substrate used: 70:30 with caffeine versus 53:47 with dapsone. Phenotype assignment differed considerably between the two methods and there were numerous discrepancies between phenotype and genotype. The NAT2 genotype distribution was 45:55 slow:rapid. Control subjects, phenotyped only with caffeine, were 67:33 slow:rapid versus 60:40 genotypically. Stable AIDS patients, phenotyped only with dapsone, were 55:45 slow:rapid versus 46:54 genotypically. Following resolution of their acute infections, 12 of the acutely ill subjects were rephenotyped with dapsone. Phenotype assignment remained unchanged in all cases. The distribution of NAT1 alleles was similar in all three groups. It is evident from the amount of discordance between caffeine phenotype and dapsone phenotype or genotype that caution should be exercised in the use of caffeine as a probe for NAT2 in acutely ill patients. It is also clear that meaningful study of the acetylation polymorphism requires both phenotypic and genotypic data.


Assuntos
Infecções por HIV/genética , Acetilação , Adulto , Antígenos CD/sangue , Arilamina N-Acetiltransferase/genética , Sequência de Bases , Cafeína/farmacocinética , Primers do DNA , Dapsona/farmacocinética , Feminino , Genótipo , Infecções por HIV/metabolismo , Humanos , Isoenzimas/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptores do Fator de Necrose Tumoral/sangue , Receptores Tipo II do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...